Ultramarine is a deep blue pigment which was originally made by grinding lapis lazuli into a powder. Webster's New World Dictionary of American English, Third College Edition 1988. Its lengthy grinding and washing process makes the natural pigment quite valuable—roughly ten times more expensive than the stone it comes from and as expensive as gold.
The name ultramarine comes from the Latin word ultramarinus. The word means 'beyond the sea', as the pigment was imported by Italians traders during the 14th and 15th centuries from Mining in Afghanistan. Much of the expansion of ultramarine can be attributed to Venice which historically was the port of entry for lapis lazuli in Europe.
Ultramarine was the finest and most expensive blue used by Renaissance painters. It was often used for the robes of the Virgin Mary and symbolized holiness and humility. It remained an extremely expensive pigment until a synthetic ultramarine was invented in 1826.
Ultramarine is a permanent pigment when under ideal preservation conditions. Otherwise, it is susceptible to discoloration and fading.
The major component of lazurite is a complex sulfur-containing sodium-silicate (Na8–10Al6Si6O24S2–4), which makes ultramarine the most complex of all mineral . Some chloride is often present in the crystal lattice as well. The blue color of the pigment is due to the radical anion, which contains an unpaired electron.
Particle size distribution has been found to vary among samples of ultramarine from various workshops. Numerous grinding techniques used by painters have resulted in different pigment/medium ratios and particle size distributions. The grinding and purification process results in pigment with particles of various geometries. Different grades of pigment may have been used for different areas in a painting, a characteristic that is sometimes used in art authentication.
A method to produce ultramarine from lapis lazuli was introduced by the 5th century for use in Buddhist cave temples. The method was described by Cennino Cennini in the 15th century. This process consisted of grinding the lapis lazuli mineral, mixing the ground material with melted wax, , and , wrapping the resulting mass in a cloth, and then kneading it in a dilute lye solution, a potassium carbonate solution prepared by combining wood ash with water. The blue lazurite particles collect at the bottom of the pot, while the colorless crystalline material and other impurities remain at the top. This process was performed at least three times, with each successive extraction generating a lower quality material. The final extraction, consisting largely of colorless material as well as a few blue particles, brings forth ultramarine ash which is prized as a glaze for its pale blue transparency.Lara Broecke, Cennino Cennini's Il Libro dell'Arte : a New English Translation and Commentary with Italian Transcription, Archetype 2015, pp. 89–90. This extensive process was specific to ultramarine because the mineral from which it is derived has a combination of both blue and colorless pigments. If an artist were to simply grind and wash lapis lazuli, the resulting powder would be a greyish-blue color that lacks purity and depth of color since lapis lazuli contains a high proportion of colorless material.
Although the lapis lazuli stone itself is relatively inexpensive, the lengthy process of pulverizing, sifting, and washing to produce ultramarine makes the natural pigment quite valuable and roughly ten times more expensive than the stone it comes from. The high cost of the imported raw material and the long laborious process of extraction combined has been said to make high-quality ultramarine as expensive as gold.
The preparation is typically made in steps:
Ultramarine poor in Silicon dioxide is obtained by fusing a mixture of soft clay, sodium sulfate, charcoal, sodium carbonate, and sulfur. The product is at first white, but soon turns green "green ultramarine" when it is mixed with sulfur and heated. The sulfur burns, and a fine blue pigment is obtained. Ultramarine rich in silica is generally obtained by heating a mixture of pure clay, very fine white sand, sulfur, and charcoal in a muffle furnace. A blue product is obtained at once, but a red tinge often results. The different ultramarines—green, blue, red, and violet—are finely ground and washed with water.
Synthetic ultramarine is a more vivid blue than natural ultramarine, since the particles in synthetic ultramarine are smaller and more uniform than the particles in natural ultramarine and therefore Diffusion light more evenly. Its color is unaffected by light nor by contact with oil or lime as used in painting. Hydrochloric acid immediately bleaches it with liberation of hydrogen sulfide. Even a small addition of zinc oxide to the reddish varieties especially causes a considerable diminution in the intensity of the color. Modern, synthetic ultramarine blue is a non-toxic, soft pigment that does not need much mulling to disperse into a paint formulation.
The chromophore is proposed to be or S4.
Ancient Egyptians used lapis lazuli in solid form for ornamental applications in jewelry, however, there is no record of them successfully formulating lapis lazuli into paint. Archaeological evidence and early literature reveal that lapis lazuli was used as a semi-precious stone and decorative building stone from early Egyptian times. The mineral is described by the classical authors Theophrastus and Pliny. There is no evidence that lapis lazuli was used ground as a painting pigment by ancient Greeks and Roman people. Like ancient Egyptians, they had access to a satisfactory blue colorant in the synthetic copper silicate pigment, Egyptian blue.
The first noted use of lapis lazuli as a pigment can be seen in 6th and 7th-century paintings in Zoroastrian and Buddhist cave temples in Afghanistan, near the most famous source of the mineral. Lapis lazuli has been identified in Chinese paintings from the 10th and 11th centuries, in Indian mural paintings from the 11th, 12th, and 17th centuries, and on Anglo-Saxon and Normans illuminated manuscripts from . Ultramarine also appears in Islamic illuminated manuscripts from the 15th and 16th centuries throughout modern-day Afghanistan and Iran.
Venice was central to both the manufacturing and distribution of ultramarine during the early modern period. The pigment was imported by Italians traders during the 14th and 15th centuries from Mining in Afghanistan. Other European countries employed the pigment less extensively than in Italy; the pigment was not used even by wealthy painters in Spain at that time.
During the Renaissance, ultramarine was the finest and most expensive blue that could be used by painters. Color infrared photogenic studies of ultramarine in 13th and 14th-century Siena panel paintings have revealed that historically, ultramarine has been diluted with white lead pigment in an effort to use the color more sparingly given its high price. The 15th century artist Cennino Cennini wrote in his painters' handbook: "Ultramarine blue is a glorious, lovely and absolutely perfect pigment beyond all the pigments. It would not be possible to say anything about or do anything to it which would not make it more so."Lara Broecke, Cennino Cennini's Il Libro dell'Arte , a New English Translation and Commentary with Italian Transcription, Archetype 2015, p. 89. Natural ultramarine is a difficult pigment to grind by hand, and for all except the highest quality of mineral, sheer grinding and washing produces only a pale grayish blue powder.
The pigment was most extensively used during the 14th through 15th centuries, as its brilliance complemented the vermilion and gold of illuminated manuscripts and Italian panel paintings. It was valued chiefly on account of its brilliancy of tone and its inertness in opposition to sunlight, oil, and slaked Calcium oxide. It is, however, extremely susceptible to even minute and dilute mineral and acid vapors. Dilute HCl, HNO3, and H2SO4 rapidly destroy the blue color, producing hydrogen sulfide (H2S) in the process. Acetic acid attacks the pigment at a much slower rate than mineral acids.
Ultramarine was only used for when it was applied Fresco-secco because frescoes' absorption rate made its use cost prohibitive. The pigment was mixed with a binding medium like egg to form a tempera and applied over dry plaster, such as in Giotto di Bondone's frescos in the Cappella degli Scrovegni or the Arena Chapel in Padua.
European artists used the pigment sparingly, reserving their highest quality blues for the robes of Mary and the Christ child, possibly in an effort to show piety, spending as a means of expressing devotion. As a result of the high price, artists sometimes economized by using a cheaper blue, azurite, for under painting. Most likely imported to Europe through Venice, the pigment was seldom seen in German art or art from countries north of Italy. Due to a shortage of azurite in the late 16th and 17th century, the price for the already-expensive ultramarine increased dramatically.
In 1814, Tassaert family observed the spontaneous formation of a blue compound, very similar to ultramarine, if not identical with it, in a lime kiln at St. Gobain.Tessaërt gave a sample of the pigment to the French chemist Louis Nicolas Vauquelin for analysis: In 1824, this caused the Societé pour l'Encouragement d'Industrie to offer a prize for the artificial production of the precious color. Processes were devised by Jean Baptiste Guimet (1826) and by Christian Gmelin (1828), then professor of chemistry in Tübingen. While Guimet kept his process a secret, Gmelin published his, and became the originator of the "artificial ultramarine" industry.See:
A plague known as "ultramarine sickness" has occasionally been observed among ultramarine oil paintings as a grayish or yellowish gray discoloration of the paint surface. This can occur with artificial ultramarine that is used industrially. The cause of this has been debated among experts, however, potential causes include atmospheric sulfur dioxide and moisture, acidity of an oil- or oleo-resinous paint medium, or slow drying of the oil during which time water may have been absorbed, creating swelling, opacity of the medium, and therefore whitening of the paint film.
Both natural and artificial ultramarine are stable to ammonia and caustic in ordinary conditions. Artificial ultramarine has been found to fade when in contact with lime when it is used to color concrete or plaster. These observations have led experts to speculate if the natural pigment's fading may be the result of contact with the lime plaster of fresco paintings.
Large quantities are used in the manufacture of paper, and especially for producing a kind of pale blue writing paper which was popular in Britain. During World War I, the RAF painted the outer with a color made from ultramarine blue. This became BS 108(381C) aircraft blue. It was replaced in the 1960s by a new color made on phthalocyanine blue, called BS110(381C) roundel blue.
The term ultramarine can also refer to other pigments. Variants of the pigment such as "ultramarine red," "ultramarine green," and "ultramarine violet" all resemble ultramarine with respect to their chemistry and crystal structure.
The term "ultramarine green" indicates a dark green while barium chromate is sometimes referred to as "ultramarine yellow". Ultramarine pigment has also been termed "Gmelin's Blue," "Guimet's Blue," "New blue," "Oriental Blue," and "Permanent Blue".
|
|